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A method is presented to evaluate the Koningsveld g-functions for quasi-ternary polymer solutions and 
blends, involving binary and ternary interactions. A robust set of 12 equations derived from the Flory 
Huggins lattice theory, dealing with liquid-liquid phase separation conditions, have been solved using as 
input data the experimental volume fractions of each component in each coexisting phase. These values were 
found by means of a liquid microextraction procedure followed by size-exclusion chromatography analysis. 
Several approximations are proposed and discussed in order to select the best option to predict 
thermodynamic properties of binary polymer blends and blends in solution. The dimethylformamide/ 
poly(vinylidene fluoride)/polystyrene ternary solution was chosen to test the validity of our proposal. In 
general, the analytical form of the g-function is adequately described by a second order polynomial, the 
inclusion of the ternary interaction parameter also being recommended. From the values of the PVDF/PS 
interaction function it can be inferred that this blend behaves as slightly incompatible under environmental 
conditions, in clear agreement with data previously reported. In contrast, the incompatibility is suppressed 
when a low molar mass component, such as dimethylformamide, is added, reaching the semidilute regime 
(total polymer volume fraction q~p ~ 0.35). Values of the Gibbs free-energy of mixing as a function of the 
blend composition were also evaluated for both ternary solution and dry blend and discussed in terms of 
their stability. Copyright c~ 1996 Elsevier Science Ltd. 
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IN TR ODUC TION 

A great number of advanced materials for technological 
applications are based on mixtures of two or three 
polymers. However, binary and ternary polymer blends 
constitute very complex systems in solid state as well as 
in melt or in solution j 3 .  In addition, despite the 
increasing interest in translation of the formalism for 
model polymer systems to real ones, most of the 
theoretical calculations have been carried out with 
empirical and approximate models. In general, the 
phase diagrams are the main tool to illustrate and to 
understand the thermodynamic behaviour of multi- 
component polymer systems, in particular upper and 
lower critical solution temperatures, binodal and spino- 
dal equilibrium curves, multicritical polymer concentra- 
tion, etc. 4. 

Undoubtedly, the Flory-Huggins (FH) lattice theory 5 
is the most accessible, and hence often most widely used 
to predict qualitatively the phase separation phenomena 
in binary and ternary polymer solutions and blends. This 
approach has the advantage that ahnost all polymer-  
solvent and polymer-polymer interaction parameters, 

* To whom cor respondence  should  be addressed  

necessary to implement any thermodynamic quantity, 
are available 6--s for a great number of polymers and 
solvents. Other approaches, such as the equation-of-state 
(EOS) and related approaches and group contribution 
methods, can also be considered as highly attractive for 
prediction of the behaviour of multicomponent polymer 
mixtures. Recently, most sophisticated theories seeking 
to avoid the shortcomings introduced by the FH 
treatment, attempt to throw light on the behaviour of 
these complex systems. In this regard, deserves to be 
mentioned the lattice cluster theory (LCT) of Freed and 
coworkers 9-11 and the 'reference interaction side model' 
(RISM) 12 extended to homopolymer melts (PRISM) 13'14, 
which both give a good account of the intermolecular 
correlations. The analogue of the FH interaction 
parameter, in this last context, is expressed in terms of 
direct correlation functions. A description in depth of the 
above treatments can be seen in some classical books and 
in two reviews recently published 1-5 15.16. 

There have been many attempts to improve the original 
FH formalism in order to predict properly the thermo- 
dynamic behaviour of real polymer systems. Among the 
modifications suggested, the most often reported is that 
consisting of the introduction of a x-parameter depen- 

4 8 1 7  dent upon temperature and composition ' ' . Following 
the Koningsveld recommendation, nowadays most 
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reports concerning this field use the g-function instead of 
the ~-parameter. 

In this context, an alternative approach has been 
pursued in our laboratory. In a previous report ~s, an 
extension of the FH formalism to ternary solvent/ 
polymer/polymer systems, involving binary and ternary 
interaction parameters composition-dependent has been 
developed, and reliable predictions of polymer polymer 
compatibility have been found. Briefly, our proposal 
requires accurate phase composition data from liquid- 
liquid phase separation experiments at constant tem- 
perature and pressure. Liquid phase microextraction in 
conjunction with size-exclusion chromatography (s.e.c.) 
provides a suitable way to generate proper experimental 
data. From each microextraction experiment we find the 
composition of two points of the ternary phase diagram, 
each one located at the intersection of a given tie-line 
with each branch of the phase separation curve. Thus, 
phase separation results have been used to simulta- 
neously obtain the binary and ternary interaction 
parameters as well as their derivatives as a function of 
the composition for solvent/polymer/polymer systems 
and for dry polymer blends which exhibit, at least, a 
certain degree of incompatibility. Polymer pairs largely 
recognized as compatible cannot be treated with this 
methodology since drastic experimental conditions are 
needed to obtain the two phase region, and under these 
extreme conditions s.e.c, experiments cannot be carried 
o u t .  

Recently, Mumby and coworkers 192° have used a 
computational method involving the solution of a non- 
linear system of equations for the determination of both 
temperature- and composition-dependence of the FH 
interaction parameters. The treatment is restricted to 
binary systems (polymer/solvent or polymer/polymer 
mixtures) where the polydispersity effects, previously 
studied in a quantitative manner et 24, have also been 
included in order to predict cloud-point curves. More- 
over, progress in the prediction of thermodynamic 
properties arises from the combination of the FH 
expressions with molecular simulation and Monte 
Carlo methods. In this context, attempts to modify FH 
formalism involving size-effects or chain stiffness have 
been reported, to calculate phase diagrams of model 
polyurethanes25.>. 

This paper represents an extension of a previous 
contribution ~ and develops new strategies to improve 
the thermodynamic predictions for ternary polymer 
systems. In order to test our proposal, phase separation 
experiments have been conducted on a dimethylforma- 
mide (DMF)(1)/poly(vinylidene fluoride) (PVDF)(2)/ 
polystyrene (PS)(3) ternary system. A set of 27 original 
mixtures have been used to calculate the composition of 
each component in the two coexisting phases in 
equilibrium. 

On the other hand, liquid-liquid phase equilibrium 
condition for ternary systems has served to obtain three 
basic equations to adequately describe, in the framework 
of the FH theory, the equilibrium condition of each 
component in each phase. By fitting the composition 
values into these equations, g-functions for polymer 
solvent, polymer polymer and ternary interaction param- 
eters have been evaluated. Results from several options 
and approximations are developed and discussed not 
only for the above ternary system but also for the PVDF/ 

PS blend. Finally, the Gibbs free-energy of mixing at 
constant pressure and temperature has been evaluated as 
a function of the polymer composition in order to 
qualitatively understand the correlation between phase 
stability and compatibility in polymer blends. 

EXPERIMENTAL 

Chemical,s' 
Poly(vinylidene fluoride) (PVDF) was kindly supplied 

by Penwalt Corp. (Oxford, UK) and designated as 
Kynar 721. The polydispersity index and weight-average 
molar mass (M w) were 2.70 and 67 4000, respectively, as 
determined by s.e.c, using polystyrene calibration 
standards. Polystyrene (PS) was purchased from Tosoh 
Corp. (Tokyo, Japan) with Mw = 15000 and poly- 
dispersity index 1.02, as specified by the supplier. 
Dimethylformamide (DMF) from Scharlau (Barcelona, 
Spain) of s.e.c, grade was used as solvent. The densities 
of the chemicals were 0.9445, 1.78 and 1.05gml i tk~r 
DMF, PVDF and PS, respectively. 

ChromalograptT)" 
The liquid chromatograph consisted of a Model 590 

solvent-delivery system and a U6K universal injector 
from Waters (Mildford, MA, USA). Detection was 
carried out with a Model ERC-7522 Erma (Tokyo, 
Japan) refractive index detector and chromatograms 
were recorded by using a dual-channel recorder (Yoko- 
gawa Electric Works, Tokyo, Japan). The system was 
equipped with three #-styragel columns (30 cm length x 
0.78cm i.d.) packed with highly cross-linked styrene- 
divinylbenzene copolymer of 105, 10 4 and 103 A nominal 
pore-size from Waters and with an effective molar mass 
range separation from 200 to 4 million. DMF, used as 
the mobile phase, was previously degassed and clarified 
by passing it under vacuum through a 0.45 #m regener- 
ated cellulose filter from Micro Filtration Systems 
(Dublin, CA, USA). All chromatographic experiments 
were conducted at room temperature and the columns 
were equilibrated overnight prior to starting any experi- 
ment. Chromatograms were obtained at a flow rate of 1.0 
mlmin i by injection of 90#1 of 0.1% (w/v) solute 
solutions prepared using DMF as solvent. 

Phase separation experinwnls 
The two polymers to be blended were accurately 

weighed (about 0.3 g total) into a calibrated glass tube of 
10.00 ± 0.05 ml. In order to dissolve the two polymers, 
DMF was slowly introduced in the tube, sealed with 
Teflon seals, gently shaken, heated up to 45 50C to 
promote solution of the polymers and left to reach 
equilibrium at 25~'C. DMF was added until solution of 
the polymers was accomplished. At this moment two 
phases in equilibrium appeared, the less concentrated 
phase on top, and the more concentrated phase on the 
bottom of the tube. Normally, it took several hours to 
complete the macroscopic phase separation. After two 
days equilibration time, we first read the volume of each 
phase, then 250 #1 of the top phase were withdrawn by 
using a microsyringe and weighed accurately. Injection 
of 90 #1 of this solution gives a chromatogram with two 
peaks corresponding to each polymer. The mass amount 
of PVDF and PS was obtained by using a calibration 
curve that relates the height of the peak with the weight 
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of the polymer• Once we know the mass of  each 
component in the 250-#1 top phase, the respective 
quantities in the bottom phase can be obtained by 
mass balance taking into account volume corrections. 
Since we extracted a certain volume of the top phase, a 
non-equilibrium state was reached, the tube was shaken 
again and left to reach a new equilibrium with two phases 
of concentrations very close to the previous ones. The 
same procedure was repeated until the masses of the 
three components in the two conjugate phases for five tie- 
lines were very close in composition. Following this 
method we obtain 27 groups (labeled 1-27) of  five tie- 
lines (c~, '3, 7, 6 and e) each one. 

T H E OR Y 

Free-energy of  mixing.[br soh, ent/polymer/polymer 
systems 

The Flory-Huggins (FH) theory has been adopted to 
account for the thermodynamic behaviour of a quasi- 
ternary solvent (1)/polymer (2)/polymer(3) system since 
it has been recognized as the most useful formalism for 
polymer solutions. In particular, we consider a mixture 
of  PVDF + PS in a common solvent such as DMF, the 
PVDF being a polydisperse commercial sample and the 
PS a monodisperse standard one. The adaptation of 
the original FH theory to multicomponent polymer 
systems leads to a large number of  terms in the master 

• • ~4 equation dealing with the free energy of  mixing" . For 
this reason, to make quantitative predictions becomes a 
difficult task• 

We consider a chain placed on a lattice of coordination 
number z (for a cubic lattice z = 6). The lattice has N 
isodiametric sites completely filled, and in a first step no 
chain ends and voids have been included in our 
calculations. Let N be the total number of lattice sites, 
a fraction of these will be filled with N 1 molecules of 
solvent. In the general case, when both polymers are 
polydisperse, the number of lattice sites occupied by the 
polymer 2 will be N~ = y~= 1 N2. i and by the polymer 3, 
N3 = ~ =  1 N3,j, where the first subscript (2,3) refers to 
one of the potentially polydisperse polymer and the 
second subscript (i,j) refers to the single molar mass 
constituents that comprise each of the components• The 
total system interaction energy for a real solution can be 
expressed as: 

Ul + Z x 2 .  iN2., + Z x3 iN3'j ~ Quasi-ternary polymer solution 
i=1 )=1 

(1) 
where x2,g and x3, j refer to the polymerization degree and 
AG to the free energy of mixing. It is convenient to write 
AG per lattice site, in order to derive an expression for 
our ternary solution, as follows: 

2xG 
= kT[o1 In O1 

N1 + Y~7= i x2,iN2.i + ~ =  l X3.iN3,i 

r . s' 

~-'(92'ilno2.i+ZO3"Ylno3v+r(T,d),M)] (2) 
+ ~ . =  .X'-,~,i j =  | X 3 , i  

where 01 is the volume fraction of  the solvent in the 
ternary mixture, and 02,i and ¢53, j are the volume 
fractions of  species i and j in polymers 2 and 3, 

respectively. The right-hand side of  equation (2) has 
two main contributions: the first one refers to the 
combinatorial entropy and the second one, denoted 
here as F(T,  0, M),  is a complex function dealing with 
the enthalpic and the non-combinatorial contribution to 
the free energy of  mixing• 

As concerning F(T,  ~, M)  for ternary systems, it has 
been widely recognized that T and ~ largely affect the 
values of F-function, whereas the M-dependence is more 
problematic and at present it has not been well under- 
stood. In this regard, it has been reported that the 
polymer-polymer interaction parameter, X, does not 

• ~ 0  ~ 1  ~ 7  • depend on M for isotopic blends . . . . .  , m clear agree- 
ment with the precognized by the FH theory. In contrast, 
other contributions suggest that )~ decreases when M 
increases in blends of chemically different com- 
ponents2S 30. In our previous work Is and here, this 
dependence has not been considered as a contribution to 
E-function. Nevertheless, it must be recognized that FH 
theory and some other modifications clearly predict a 
molar mass dependence of the critical polymer concen- 
tration for ternary solutions consisting of polymers of  
different molecular sizes in a common good solvent 31'32. 
Because our treatment is carried out under isothermal 
conditions and the system is formed by a mixture of two 
dissimilar well characterized polymer samples in a 
common solvent, hereafter E(O) will be expressed 
through 33,34 

F(O) =: r/lO2g12 + rtlO3gl3 + (n2Yc20 3 or 02n3.Y3)g23 

+ (n1~2¢.') 3 or q~lq)3n2.~'2 or c~l~2t1323)g T (3) 

where g12, g13 and g23 are the P V D F - D M F ,  PS DMF 
and PVDF PS interaction functions, respectively, and 
gx is a ternary function that takes into account other 
than binary interactions, n i (i = l, 2, 3) is the number of 
moles and the magnitudes 22 and 23 refer to the average 
polymerization degree of PVDF and PS closely related to 
the molar volumes of  each component, Vg, according to 
V l / V 2 = 1/22 and V 1 / ~ = 1/.i:3, respectively. 

Another question to be addressed concerns the lattice 
size, since not all the entities placed into the lattice 
display the same volume. For  example, in the polymer 
system chosen here it is evident that the size of the D M F  
molecules are different from that of the PVDF repeated 
unit (-CH2-CF2-) or of the PS one (C6Hs-CH-CH2-). A 
convenient way to define the size of a lattice site is to 
assume it to be suffÉciently large to hold a solvent 
molecule or one monomer unit. However, a more 
accurate treatment can be developed based on the 
calculation of the molecular surface area and volume 
using, for instance, the van der Waals radii of the 

3,; 
a toms" .  It is supposed that the chains of  both polymers 
are completely flexible. Nevertheless, the effects of the 
orientational randomness of segments of a chain 
molecule and their concentration dependence on the 
combinatory entropy have been recently discussed 35. 

Phase equilibria in quasi-ternary systems 
From the theoretical viewpoint, two phases can exist 

in equilibrium when the chemical potential of each 
component in both phases is equal. Therefore, the next 
step requires the calculation of  the chemical potentials 
for the solvent and the two polymers, which can be 
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written, in general, as: 

o fot 1 t4/ 
R~ RT [k, On,. :~ ~ ] 7.:,,,, ..... 

As can be seen, the chemical potential of each 
component can be expressed in the framework of the 
FH theory by two terms, usually named as combinatorial 
and residual (denoted here by subscript c and by F(0), 
respectively). 

On the other hand, it has been experimentally 
evidenced 36 that the DMF/PVDF/PS ternary system 
exhibits a liquid-liquid two phase separation, so that the 
thermodynamic equilibrium for each component can be 
expressed as 

( A / , : ) '  - (A / ,~ ) "  (5) 

Prime and double prime denoting the principal and 
conjugate phases in equilibrium, respectively. For 
simplicity, the full expanded version of equation (5) for 
each component as a function of the volume fractions of 
each phase, 0'i, and O'i', has been incorporated in the 
Appendix section. Therefore, in the light of equations 
(A2), (A3) and (A4), the magnitudes to be evaluated are: 

I I I I f l  II  I I  I I  

(o°'l'~) , (g" ~ ) .  (g"~31 , ( ~ ' T ) ,  ( g  2) , (g13)  , (.'g23) , ( g T )  , a s  
- -; % "  • I , f 

well as their derivatives: (dgl2/dc~2), (d<'4i~/d~'b), (dg>/ 
d,031', (Ogs/O0~)', (dgl2/do2)", (rigid/do3)", (d&3/ 
do~)" and (Ogv/O¢~)". 

These 16 unknowns have been generated considering 
exclusively the polymer polymer and polymer solvent 
composition dependence of the residual contribution to 
the free energy of mixing. If one wishes to perform a 
more realistic treatment, i.e. optimization of the lattice 
size, polydispersity effects, chain stiffness etc., the total 
number of unknowns will increase, which would imply 
implementation of a more sophisticated expression for 
the AG function. It is convenient to outline that we are 
exclusively concerned with the evaluation of g12, egl 3, g23 
and gT as a function of the composition for ternary 
solvent/polymer/polymer systems in order to rationalize 
the complex phase behaviour of polymer blends in terms 
of interactions. 

Moreover, rather than presenting the mathematical 
details of the calculations, we shall only discuss the 
physical meaning of the interaction parameters as well as 
the related assumptions made to reach the final results. 
In this regard, it is convenient to clarify the assumptions 
handled here, which can be classed into three categories: 

a) Assumptions inherent to the FH theory 5> such as: 
i) the neglection of any correlation effects in the 
occupancy of the lattice sites: ii) the actual number of 
effective neighbour contacts are still significantly 
overestimated: and iii) the lattice sites can be occupied 
independently from each other what is no longer true 
for self-avoiding and mutually avoiding chains. 

b) A second set of assumptions concerns the polymer 
microstructure and molecular patterns required to 
model a real polymer chain. The following can fall 
within this section: free-volume and size effects, 
flexibility or chain stiffness, tacticity, crystallinity 
and polydispersity involving molar mass and molar 
mass distribution. 

c) Specific assumptions related to the methodology 
reported here. It is evident that in order to obtain 
specific results on multicomponent polymer solutions 

it is necessary to evaluate complex thermodynamic 
equations introducing several closure approxima- 
tions, which in a further step could be suppressed. 
These kind of assumptions do have a transient nature. 

As stated previously, we have arbitrarily chosen the 
DMF(1)/PVDF(2)/PS(3) ternary system to test the level 
of fulfillment of our proposal. However, PVDF is a 
polydisperse commercial sample and has been repre- 
sented by its average polymerization degree, x2. Rigor- 
ously, only when the molar volumes of the monomer 
units, -(CH2-CF2)- and -(Ce, Hs-CH-CH2)- and that of 
the DMF are of the same order, .\, can be regarded as a 
true polymerization degree 37. Obviously. the size of these 
entities are far off this condition as a consequence of the 
strong asymmetric character of the involved polymer 
mixture. The above argument can be considered as an 
example of the assumptions included in (b) where size 
and polydispersity effects have been disregarded. 

Other assumptions assumed throughout the paper 
refer to the inclusion or not of the so-called ternary 
interaction parameter, gT, as well as the composition 
dependence of g:/, gT and their derivatives. These 
questions are examples of the simplifications falling 
within (c) and we submit the reader to the next section 
where these approaches have been detailed in depth, in 
the so-called options A, B and C. 

RESULTS AND DISCUSSION 

Different PVDF/PS mixtures have been prepared adding 
DMF as common solvent until phase separation occurs. 
Following the procedure detailed in Experimental, it is 
possible to evaluate the composition of both 01 and c~i' 
phases denoted by the tie-line c~ in Table l. Successive 
extractions and injections for s.e.c, analysis of the 
suitable amounts from the top phase, and further 
reequilibration of the system allow to obtain the 
composition of the remaining tie-lines. As a numerical 
example of the procedure, Table 1 compiles the 
composition of the c~., i7, ~,, h and ~ tie-lines from run 8. 
The same methodology has been l\)llowed for the 
remaining polymer mixtures. For the sake of simplicity, 
Table 2 shows the average composition values for the 
principal (0'~} and conjugate phases {0'/} obtained with 
the 5 tie-lines and for 27 runs analysed by s.e.c, for the 
DMF/PVDF/PS system. 

For calculation purposes, we have used as input data 
the ¢~ e tie-line compositions of the 27 runs compiled in 
Table 2. The expanded equations dealing with the 
equilibrium conditions of liquid -liquid phase separation 
experiments have been written in the Appendix. The 
computational method used here is based on these 
equations, being 0', and 0',: the input data and the ,~: 

Table 1 Values of  the compos i t ion  for the principal {<',1 and 
conjuga te  (o',') phases  in equi l ibr ium as de termined by." s.e.c, at 25 (" 
for D M F ( 1 )  PVDF(2)/PS(3)  system 

i t  

Tie-line o'l o'~ +/~ "'i' o2 "'~ 

<t 0.90215 0.00198 0.09587 0.94375 0.02902 11.02723 
4 0.90318 0.00161 0.09521 0.94232 0.03051 0.02717 
~-, 0.89113 0.00053 0.10834 0.94803 0.02932 0.02265 
b 0.90100 0.00199 0.09701 0.94818 tl.02825 0.02357 
+ 0.89613 0.00494 0.09893 0.96535 0.01967 0.01498 
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Table 2 Mean composition values obtained from five tie-lines (~, ~ in each case) for diverse DMF(I)/PVDF(2)/PS(3) mixtures 

Run (0',} ( ~ )  (0'3)' (o',') ( ~ )  (0~) 

l 0.97050 0.00372 0.02578 0.85241 0.07942 0.06817 
2 0.96332 0.00778 0.02891 0.69515 0.28977 0.01508 
3 0.94337 0.01898 0.03765 0.95540 0.03760 0.00700 

4 0.92965 0.03004 0.04030 0.93571 0.04262 0.02167 
5 0.93565 0.01691 0.04744 0.94002 0.03192 0.02807 
6 0.91585 0.01674 0.06741 0.95605 0.03448 0.00947 

7 0.87457 0.05529 0.07014 0.96239 0.02762 0.00999 
8 0.90925 0.00557 0.08517 0.94568 0.03622 0.01810 
9 0.89814 0.00583 0.09603 0.95276 0.02167 0.02557 

lO 0.89872 0.00221 0.09907 0.94953 0.02602 0.02445 

I1 0.89217 0.00845 0.09938 0.95447 0.02538 0.02015 
12 0.89829 0.00150 0.10021 0.95617 0.02920 0.01463 

13 0.89608 0.00365 0.10027 0.95040 0.02817 0.02143 
14 0.87921 0.01016 0.11063 0.96059 0.02139 0.01802 
15 0.84942 0.01790 0.132~8 0.94338 0.05158 0.00504 
16 0.86398 0.00067 0.13535 0,94872 0.03351 0.01778 

17 0.83239 0.02897 0.13864 0.96701 0.02517 0.00782 
18 0.83755 0.02004 /).14241 0,95514 0.03656 0.00830 

19 0.78016 0.07557 0.14427 0.95463 0.04021 0.00516 
20 0.79642 0.05783 0.14575 0.95393 0.03971 0.00636 
21 0.84175 0.00674 0.15151 0.91757 0.07137 0.01105 
22 0.82702 0.01451 0.15846 0.94729 0.04182 0.01090 
23 0.70220 0.13107 0.16673 0.96072 0.02843 0.01085 
24 0.79998 0.02743 0.17259 0.95811 0.02846 0.01344 

25 0.80592 0.00074 0.19333 0.88998 0.10678 0.00342 
26 0.74462 0.03646 0.21893 0.948{)5 0.04688 0.00603 
27 0.64428 0.12419 0.23153 0.96014 0.03478 0.00508 

pa rame te r s  as well as their  respective derivat ives,  the 
unknowns  to be evaluated .  Obvious ly ,  one can a t t empt  
to solve a set o f  16 equat ions  to direct ly  ob ta in  the 16 
unknowns  deta i led above.  However ,  some ra t ional  
a p p r o x i m a t i o n s  can be made  in o rder  to reduce the 
calcula t ions .  Next ,  we proceed  to relate the different 
op t ions  selected to ob ta in  the numerica l  values of  the 
unknowns  at  different po lymer  compos i t ions .  Not ice  
that  we emphas ize  on the concen t ra t ion  dependence  o f  
the pa rame te r s  gij and  g r  that  are closely re la ted with the 
concept  o f  compa t ib i l i t y  in po lymer  blends.  In addi t ion ,  
all the raw da t a  used in our  ca lcula t ions  come from a 
given run, as can be seen in the example  given in Table 1 
which is cons t i tu ted  by five adjacent  tie-lines. It is also 
evident  that  the shifts in concen t ra t ion  for each 
c o m p o n e n t  a m o n g  tie-lines o f  the same run can be 
neglected because  the a m o u n t  o f  ma t t e r  removed  from 
the top  phase  for each microex t rac t ion  for  s.e.c, analysis  
is very small.  

Option A 
Let us cons ider  a l inear  concen t ra t ion  dependence  o f  

the gJ2 and  gr3 in te rac t ion  pa rame te r s  upon  a na r row 
compos i t i on  range,  as the one del imi ted  in Table 1 for the 
01 and 01' values.  In this way, each volume fract ion o f  a 
given tie-line is subs t i tu ted  into equat ions  (A2), (A3) and 
(A4) (see Append ix ) ,  being the total  set o f  unknowns  to 
be evaluated:  (g12)', (g13)', (g23)', (gT)', (g12)", (g13)", 
(g23)", (gw)", (dg23/dO3)', (0gT/003) ' ,  (dg23/d03)" and 

, ~ I f  I 

(0g'T/00~) . It has been assumed that  (dg12/d02) = 
I t  1 I t  • 

(dgl2/d02) and (dgl3/d03) = (dgl3/d03) , being these 
derivat ives  easily evalua ted  f rom the equat ions:  

(g12) II = (gl2)l + (OJ -- 0~) dg'12 
do2 

(g13)" - (gJ3)' + (O~ - 0~) dgB (6) 

F o r  this purpose  we need a set o f  12 l inear  equa t ions  to 
ob ta in  the above  12 unknowns  fitting the ~p' and  0"  
values f rom at least four  tie-lines. Because five different 
tie-lines per  run are avai lable ,  as shown in Table 1, we 
can ob ta in  different combina t ions  o f  four  tie-lines, such 
as: cr376;  c~ 3~/< a36e; o~T& and '3?6< which al lows us 
to generate  five sets o f  numer ica l  values for  the 
a fo rement ioned  12 unknowns .  By extension o f  this 
p rocedure  to the remain ing  26 runs compi led  in Table 
2, we will ob ta in  5 × 27 O-values for each unknown.  

Option B 
In this op t ion  we assume that  the concen t ra t ion  

dependence  o f  the p o l y m e r - s o l v e n t  in terac t ion  para -  
meters  can be reasonably  omi t ted  within a na r row 
concen t ra t ion  range 18'38, such as the one considered 
into a set o f  ad jacent  tie-lines. Therefore  ~12/d02 and 
dgl3/d03 will tend to zero. In cont ras t ,  the g23 and gT 
pa rame te r s  retain the same concen t r a t ion -dependence  as 
explici ted in the preceding opt ion.  This s implif icat ion 
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yields the following unknowns: (xi2)‘; (xis)‘, (g2s)‘, (gr)‘, 
(x12)“> (x13)“, (g23)“Y (gr)“? (dg23lQ3)‘, (dg23lG3)” 

(ag,/a$,)’ and (dgr/d43)11. Notice that we have 
introduced the notation xi2 and xl3 instead of g12 and 
g13 since g + x when dg/d$ -+ 0 (assumed in this option 
only for the polymer-solvent interaction parameters). 

As will be seen in the next section, we present two 
kinds of data labelled in all cases as options Bi and B2 in 
the respective plots. In both cases we have used the 
approach stated above. Points for option B1 have been 
selected according to the usual statistical criterion, 
whereas points for option B2 correspond to the same 
compositions that those depicted in option A. 

Option C 
We include here a crude approach affecting both 

polymer-solvent and ternary interaction parameters, 
hence we have fully suppressed their concentration 
dependence and well as the gr parameter. Notice that 
in this option we consider the polymer-solvent inter- 
action parameters as non-dependent of polymer con- 
centration in all the composition range where phase 
separation takes place, in contrast with the preceding 
option when the same assumption has been restricted to 
the concentration range of each branch of the coex- 
istence curve obtained from liquid-liquid phase separa- 
tion experiments. See for example Figure 4 in the 
preceding paper 18, where the PVDF-rich and PVDF- 
poor branches of the coexistence curve were displayed. 
This approach holds the following 6 unknowns: x12, x13, 
(g23)‘, (g23)“, (dg23/&3)’ and (dg23/dq53)“. Recalling 
that the composition of five tie-lines per run are 
available, and that we need to perform in this option a 
set of 6 equations to evaluate the above 6 unknowns, one 
can make 10 different combinations of pairs of tie-lines 
per run, such as: a@; oy; aS; ae; etc. 

Data analysis 
Owing to the high number of values generated within a 

given option (for example, 270 sets of xij, g23, and dg23/ 
d 43 values in the C-option), a selection of these data has 
been analysed. In this way, data falling outside of the 
range of three times the standard deviation were 
discriminated to the end fit. The results and discussion 
will be. presented in the following order: first, the 
polymer-solvent interaction parameters >iij and gii; 
second, the g2s parameter will be shown and discussed, 
and finally the gr parameter will be considered as well as 
the free energy of mixing in terms of blend compatibility. 

Figure 1 shows the composition-dependence of the 
polymer-solvent interaction parameters, g12 and x12, 
againstthe reduced volume fraction 42/($1 + ,$2) for the 
DMF( l)/PVDF(2)/PS(3) system and all the calculation 
options explained before. Similarly, Figure 2 displays the 
values of the g13 or xl3 parameters versus $3/(41 + qS3) 
for the same system and the four options (A, Bi, B2 and 
C from top to bottom as in Figure I ). 

As can be seen, in Figures 1 and 2 a good quantitative 
fit has been achieved, in general, except for option C 
where a gross scatter of data is observed. In this last case, 
as expected, the agreement is quite poor, as a con- 
sequence of the crude approximation introduced which 
neglects the dependence of the interaction parameters on 
polymer concentration in all the composition range 
where phase separation takes place. 
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In order to test the validity of our proposal we have 
collected, for comparison, in Table 3 the values of 
polymer-solvent interaction parameters extrapolated 
at infinite dilution (see also column labelled as “a” in 
Table 4) from options A, Bi, B2 and C together with 
data previously reported. Note that the evaluation of 
xii (i = 2,3) from experimental data extrapolated at 
infinite dilution is a common practice. As might be 
expected, strong discrepancies between data coming 
from different options arises since drastic approxima- 
tions have been introduced in some cases (option C for 
instance). Despite these uncertainties, a good agreement 
between the xl2 values from options Bi and B2 and those 
previously reported can be observed. Deviations lower 
than 5% falling within the range of the uncertainty of the 
molar mass determination corroborate, in this case, the 
validity of our treatment. However, discrepancies 
around 7% are observed by comparison of the xl3 
values. Nevertheless, it must be taken into account the 
difference in the molar masses of the PS samples used 
here and in other reports40-42, which probably is the 
origin of the large deviation. At present, experimental 

Table 3 Comparison between the polymer-solvent interaction param- 
eters at infinite dilution obtained here and those previously reported 

Option 

A 

Bl 
B2 
C 

Xl2 Xl3 

0.652 0.605 
0.522 0.575 
0.458 0.656 
0.581 0.579 
0.47 i 0.0239 0.49 f 0.0240 

o.504’ 0.604’ 
0.61742 0.65442 

data of interaction parameters for DMF-PVDF and 
DMF-PS pairs of the same molar mass as used here have 
not yet been reported. 

Next, Figure 3 (upper part) shows the composition 
dependence of polymer-polymer interaction parameter 
g23 as a function of the reduced volume fraction 4 3 / (4 2 + 
#J s) which allows us to cover a composition range from 0 
(pure PVDF) to 1 (pure PS) for the same options as 
before. We consider here the PVDFjPS mixture as a dry 
blend where the order of magnitude and sign of g23 is 
closely related with the concept of blend compatibility at 
a given composition. In agreement with most data from 
polymer-polymer interaction parameters, a parabolic 
form is often reported for the g23 composition dependence 
in real polymer blends. 

A second order polynomial fit has also been chosen to 
account for the composition dependence of g23 as 
illustrated in Table 4. Correlation between data extracted 
from this polynomial fit and the compatibility of the 
PVDFjPS blends is a difficult task, due in large part to a 
lack of data experimentally determined under the same 
conditions as related here. However, in eneral, this 

$3-45 blend is assumed to be weakly incompatible . As far 
as we know, the g23 values reported for this blend are 
very scarce. Two values of 0.01344 and (0.021 f 0.002)45 
have been reported denoting slight incompatibility. In 
addition, from the inspection of Figure 2 from reference 
45 it seems that at PS concentrations above 85%, ~23 

becomes negative and hence the PVDFjPS blend 
becomes compatible. It can also be inferred from this 
figure that for PVDF-rich blends no compatibility is 
detected. From the results gained here for g23, it is 
observed that the data coming from A, Bi and B2 options 
are negative and those from option C are positive. As an 

Table 4 Coefficients of the polynomial fit y = a + bx + cx2 for the binary and ternary functions as well as the free energy of mixing for DMF(l)/ 
PVDF(Z)/PS(3) system at 25°C 

Option Function Variable a b C Composition range 

A 812 

BI x12 

B2 x12 

C x12 

A gl3 

BI Xl3 

B2 x13 

C x13 

A g23 

BI g23 

B2 g23 

C g23 

A &?T 

BI k?T 

B2 AG 

C AG 

B2 AG,, 

C AGz 

B2 AG,, 

C AG23 

#3(42 +43)-l 
11 

$+‘3(@2 + h-l 
II 

0.652 

0.522 

0.458 

0.581 

0.605 

0.575 

0.656 

0.579 

-0.621 

1.484 

0.736 

0.178 

0.719 

0.777 

-0.021 

-0.020 

0.182 

0.019 
i 

0.007 

-4 x 10-5 

-1.194 - 

-0.441 

-0.522 

-0.034 

-0.045 

-0.485 

-1.553 

-0.386 

-0.219 

-6.379 

-5.023 

-0.390 

-3.167 

-2.107 

-1.424 

1 x 10-s 

-0.005 

3 x 10-4 

-0.005 

3 x 10-4 

-1.330 O-0.25 

-3.190 

4.134 

2.739 

2.438 o-0.30 

2.769 

5.657>’ 

2.160 

0.713 O-1.00 

4.324 

3.460 

0.260 

11.497 o-o.35 

10.814 

1.202 O-1.00 

-0.020 

0.043 O-1.00 

-2 X 10-4 

0.043 O-1.00 

-2 x 10-4 
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example, we have calculated g:~ for a blend rich in PS 
with a composition O~ = 0.7, obtaining for options A, B~ 
and B e the following values: -0.425, 0.862 and - 1.085 
denoting compatibility; and with option C a value of 
0.032 that means slight incompatibility', in clear agree- 
ment with the previously' reported data a4~5 and with the 
expected behaviour for a PVDF(0.3)/PS(0.7) dry blend. 
Nevertheless, further experimental and theoretical con- 
tributions must be elaborated to clari6, the question 
concerning the DMF behaviour as a possible compati- 
bilizer agent between the PVDF and PS samples. 

Lastly, we have also depicted in Fi<e;ure 3 (lower part) 
the values of the gT-parameter as a function of the total 
polyiner concentration, o:  + ~%. This parameter also 
displays a second order polynomial dependence on 
composition, in the light of the values of the a, b and c 
coefficients compiled in Table 4. Note that the plotted 
(02 + 0~) values are always lower than 0.4 since mixture 
compositions higher than this value could produce 
highly viscous systems and the s.e.c, analysis could lead 
to large uncertainties in the evaluation of the conjugate 
phases composition. In general, the inclusion of the gv 
parameter in the calculations strongly affects the gm~ 
values, in contrast with its negligible influence on the 
polymer solvent interaction parameters, egl2 and gi3. 
Unfortunately, gT values are absent from almost all 
contributions on dry blends as well as from blends in 

solution, being impossible to quantitatively test the 
accuracy of the gT data here obtained. 

In the light of our findings, we can conclude that the 
reported methodology, based on the mathematical 
solution of diverse sets of linear equations (12 equations 
for options A and B. and 6 equations for option C), 
allows us to simultaneously obtain the composition- 
dependence of the ~12, <gi3, g23 and <~'T interaction 
parameters. These values can serve not only to predict 
miscibility or compatibility in polymer blends and for 
blend in solution, but also to evaluate the non- 
combinatorial entropy of mixing as well as possible 
enthalpic effects both captured by the P(d) function in 
equation (3). Thus, for a given o(~,,')i, o2, ~3) value one 
can obtain I'(O), inserting the experimental volume 
fractions and the corresponding interaction parameters 
into this equation. 

Miscibility or compatibility can also be illustrated by 
calculating the free-energy of mixing as a function of the 
composition at different temperatures. A schematic 
drawing of this dependence can be observed in some 
books (see for instance Figure 2.6 from reference 2) as well 
as in recent contributions 4~, mainly for solvent/polymer 
and polymer/polymer systems. However, this plot is not a 
common matter in most of the contributions on thermo- 
dynamics of ternary polymer systems. This absence could 
be attributed to inherent trouble to implement a proper 
software. Here, we restrict our discussion to the AG values 
obtained from the FH formalism using the experimental 0 
values as well as the <~-functions just calculated. It follows 
that the free energy of mixing, referred to one mole of 
lattice sites, can be written as: 

AG I ~  1 I 
RT  - oi Inol + l ' .  (,% In (:>~ + - - o ~  lno3 + 01(')2~12 

' -  i, I 

+ (,)103<£[13 + ()20392~ + Oi (,'52(')3£'T. (7) 

where we have included the explicit F(o) function from 
equation (3). For the calculation of AG values we have 
inserted into equation (7) all the experimental c')l Lind o f  
determined by s.e.c, and the associated ~i~ and <~,q 
computed values according to the A, Bi, Be and C 
options previously detailed. Obviously, all the obtained 
data have not been plotted because a gross scatter of 
points is observed. In order to improve the data 
correlation we have discriminated points exhibiting 
large deviations, assuming the same statistical criteria 
as in Figures 1, 2 and 3. The concentration dependence of 
the AG function is adequately described by' a second 
order fit in most cases, and the respective coefficients are 
also collected in TaMe 4. 

The question as to the goodness of fit of the theory 
cannot, however, be answered since direct comparison of 
the predictions with experiment is not possible, due to 
the lack of experimental data for this blend obtained 
under liquid liquid phase separation conditions. Never- 
theless, some comments on the thermodynamic behaviour 
of the two coexisting phases, Lit least from a qualitative 
viewpoint, need to be emphasized. Thus, F(gure 4 depicts 
AG values against o ~ / ( 0 2 + 0 ; )  tantamount to 0~/ 
(1 (&) covering all the composition range, for the 
options previously detailed. Due to the gross scatter of 
data it seems difficult to analyse the evolution followed 
by the AG values. However, it is clearly observed that 
plots corresponding to A, Bi and B e options display a 
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certain downward curvature towards negative values of 
AG, whereas the C option, excluding the gr contribu- 
tion shows the opposite trend. In the light of this 
behaviour, the inclusion of the gT parameter leads to AG 
values more consistent with the stability criteria of the 
complex ternary system studied here, as it shall be stated 
later. With the information handled here for the DMF/ 
PVDFjPS ternary system, this contradictory behaviour 
cannot be fully justified. 

On the other hand. it is rather more interesting to 
discuss the free-energy of mixing in a binary polymer, 
polymer system as a function of the blend composition. 
However, it is convenient to remember that the 
miscibility behaviour in polymer blends can be better 
illustrated by calculating the free energy of mixing as a 
function of both composition and temperature. For this 
end, the FH formalism can be used in two different ways 
that briefly can be described as follows: 

i) Let us consider that the lattice is completely filled by 
the polymer subunits exclusively and that no chain 
ends and voids are included in the calculations. The 
energy of interaction between two unlike monomers 
is characterized through the interchange energy 
function gz3. The Flory-Huggins expression for the 
Gibbs free-energy of mixing is then given by: 

(8) 

where q2 and y3 are the volume fractions, NZ and Nj 
the relative molar volumes of PVDF and PS, 
respectively, and gzl is the conventional interpolymer 
interaction function. The new volume fractions are 
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Figure 5 Dependence of the free energy of mixing for PVDFiPS. 
AGzI/RT. on the reduced volume fraction. ;j. Plots have been built up 
as I,, F;,pw I 

related with those experimentally measured by: I+ZJ? = 
o?/(dZ to?) and p3 = 63/(~2 +43), and it is 
evident that the new boundary condition is 
p7 + pi = 1. The AGZ3 values obtained through 
equation (8) have been plotted against the reduced 
composition p3 in Figure 5. It is clearly seen that the 
values for options A, BI and Bz (including gr) show a 
similar trend as the g?i function depicted in Figure 3, 
whereas option C is slightly different. Therefore, the 
free energy of mixing in the blend is well characterized 
through the g2? parameter, at least from a qualitative 
point of view. For simplicity. we present the second 
order polynomial fit of these data only for options B? 
and C, being the coefficients also compiled in Table 4. 

ii) Finally, we shall briefly discuss the extension of the 
FH theory for a virtual ternary system formed by 
void lattice sites and by the subunits of both polymers. 
The fraction of void sites is now expressed as qv, then 
ov + i2 + 03 = 1 or 52 + oi = 1 - ov. Notice that 
ov in this case is tantamount to oI in the ternary 
DMF( l)/PVDF(2)/PS(3) polymer system, but consid- 
ering now ov as constant (incompressible blend). It 
would be also useful to consider the blend as 
compressible and then ov would behave as strongly 
dependent on the pressure, which is the starting point 
of Sanchez-Lacombe lattice4 uid theory”‘-49, but this 
matter falls out of our scope. Figure 6 shows plots of 
AGlj data calculated with equation (8) using the 
experimental o2 and d3 values instead of the reduced 
volume fractions pz and cp3, and the corresponding gZ.? 
data from all options. In this figure, the observed 
behaviour for AG23 is similar to that shown in Figure 5 
but with a reduced scatter of points or. in other words. 
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the data are better fitted if the void lattice sites are 
taken into account. 

Summarizing, Figures 4-6 display most of the data 
placed around the AG = 0 line which are the coefficients 
of the second order polynomial fit (collected in Table 4) 
and are very small (~ 10 4). This would mean, in 
principle, that AG from Figure 4 or AG23 from Figures 
5 and 6 vanishes, which results in the assumption that 
both entropy (combinatorial and non-combinatorial) 
and enthalpy of mixing contributions cancel out. There- 
fore, the polymer mixture under these experimental 
conditions seem to behave as a metastable and a small 
perturbation can lead to cloudiness or opacity for the 
blend solution or in the dry blend, respectively. This 
conclusion seems to be in agreement with the recently 
reported behaviour of this blend 43 45 which exhibits a 
weakly incompatible character. 

CONCLUSIONS 

Complex behaviour of binary polymer solutions and 
blends has been studied using an extension of the Flory- 
Huggins theory. The free-energy function used here 
mainly includes the composition dependence of the 
polymer-solvent and polymer-polymer interaction 
parameters, as well as the ternary interactions by 
means of the gs parameter, scarcely reported in this 
kind of study. Experimental ternary phase diagrams for 
the DMF(I)/PVDF(2)/PS(3) polymer system have been 
monitored by means of the s.e.c, technique following a 
procedure previously proposed. A large number of 
experiments, 27 run x 5 tie-lines each, have been carried 
out in order to obtain the numerical values for each 

component in the two phases in equilibrium. From a 
pragmatic viewpoint, in order to improve the reliability 
of the calculations of both interaction parameters and 
Gibbs free-energy of mixing as a function of the polymer 
composition, we have included several constraints 
classed within four options. It is clearly evidenced that 
those including the gT parameter (A, B 1 and B~ 
throughout the paper) successfully predict the miscibility 
and the stability of the coexisting phases. Despite the 
values of g~/, gT, AG and AG23 have large uncertainties, 
the agreement with the predictions is at least reasonable. 
Thus, the differences between the X12, ~ 13 and g:3 values 
evaluated here and those obtained from experimental 
measurements may arise from inherent limitations 
associated with the techniques together with the mean- 
ingful approximation made in each option. 

In addition, the PVDF-PS interaction parameter 
evaluated in absence of DMF is quite close to zero in 
fair agreement with other experimental data measured by 
inverse gas chromatography 44 and isothermal crystal- 
lization techniques 4345. Work is in progress to extend 
this formalism in order to drastically suppress approx- 
imations related to the composition-dependence of the 
interaction parameters. A more robust set of thermo- 
dynamic equations, 15 at least instead of the 12 used 
here, must be implemented and will be reported in a later 
contribution. Furthermore, progress on the theory 
including the effects of polydispersity will improve the 
predictions in real polymer blends. 
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APPENDIX 

In the light of equation (1), fi~r a quasi-ternary polymer 
system the polydispersity effects can be introduced in the 
free energy of mixing by means of an average degree of 
polymerization, affecting to the residual part of the 
function represented by F(0) in equation (3). Because of 
the ternary polymer system used here is formed by a 
polydisperse polymer sample, PVDF(2), and by a 
monodisperse standard polymer, PS(3), equation (3) 
can be rewritten as: 

F(6) = nlo2g12 + nlO3g13 -I- (172x203 or  02113.v3)g23 

q- 'n1620 3 o r  &lO3n2.]:2 or  61O2n3X3)<ffT (A1) 

where the average degree of polymerization only remains 
for the PVDF and it has been removed for the PS sample. 

Next, the appropriate thermodynamic equations deal- 
ing with the liquid-liquid phase equilibrium can be built 
for each component by combining equations (4) and (5). 
Notice that from a practical viewpoint we have inserted 

into equation (4) the expression for F(O) given by 
equation (A1). Thus, the final relationships are, for 
component 1 

In (~i7)+ (6"- ,:?~')(1-~---~})+ (0~- O;')(1-vV---~3 l) 

Jr [(gl2) '  

- -  [(g13)" 

+~d>'~ (dg13]'] 
o ~ + < 4  0 < - 7 )  i 4 ! ~  - d ;  

" " ¢  
03(Pl dgl3 o'~(1 - 0 7 )  

oj+,~" 077j  j -  

- + e,' ( ¢ 2 q ' 1 , ,  s \ ~ )  j o.-, ,03 

[ ,, , ,  
+ (g2".,)" + 6~ dg23 0703  

÷ [(gT )' 

- [(gS )" 

:= 0 

for component 2: 

¢ o , q '  1 , ,  1 ---~'1 \0-~-3) J 0:03(1 - 20'~ 
, , 

.1---T"_,~l \ ~ 3 J  j~203(1-26 '1)  

(A2) 

in (0~) ( V2_r2 ) , , , ( V ~ )  +(01-0 ' [ )  1 -  +(0s-~P3) 1-  

d ' _ + ( ~ , : ) ' - 0 " ( g l 2 )  ] U~ , 

(g,:;,, ,,, f ¢ , : ' ~ " ]  v~ ,, 
- - 0 2  k , ~ ) J  IT~ O,(1 - #"J) 

, .,., (¢ ,3~ '1  v 2 , . ,  
f=,~) + , . 3 t ~  ) j ~.-T~,o~ 

d -"" , , , , (  ~,-q / h ,,, ,, 
+ c~,_~)" +,.3kTS-T3 ) ]75o,0~ 

+ (,<3) 

- [(g> )" 

+ [(gT )' 

,,sos ( < - q ' l  ,s ..... 

( < ' q " l  < , , ,  
Oil'+ (Sj \dO3 j j ~-t °3t l  - O~) 

, , - . ~ o , < ~ ( 1  2 <  1 - ~ ' ~  \~-~J J - ) 

- i T ) "  + ' 3 '  , ,  ,, ,, [ 1 - =-'_' - -  20,~ t O 0 3 )  ~-i OLD3( 1 - 262)  ] 

=-- 0 (AS) 

and, for component 3: 

e/ In ~7; +(0'1-01)1 -V3 +(O '~-c~) I -  
\ ~ 3 /  

v3 , ,  
- \74-<,) j V, ° ' <  
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' - t  ,~0,) ] . . . .  

(,~13) -- {,')3 k(/¢~3 ) j 
L 

+ ('~-3)'+(">'~\~te3/ / {,.)~(l c',~) 

[ 

1 - 2o'~ \ ~ ) o ~ / j  r l  _ - - ~ / ) 3 )  

× Oid~2(l .o~) : { }  {A4) 
l" I 
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